Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; : 118337, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38740110

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Microthrombosis is commonly seen in sepsis and COVID-19. Zixue Powder (ZXP) is a traditional Chinese herbal formula with the potential to treat microvascular and infectious diseases. However, the role and mechanism of ZXP in sepsis-associated thrombosis remain unclear. AIM OF THE STUDY: Investigating the therapeutic effectiveness and underlying mechanisms of ZXP in septic thrombosis. MATERIALS AND METHODS: ZXP's compositions were examined with UPLC-QTOF-MS. The efficacy of ZXP on sepsis-induced thrombosis was assessed through various methods: liver tissue pathology was examined using hematoxylin-eosin staining, platelet count was determined by a blood cell analyzer, and an enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of serum tissue factor (TF), thromboxane B2 (TXB2), D-Dimer, and plasminogen activator inhibitor-1 (PAI-1). Neutrophil extracellular traps (NETs) were localized and expressed in liver tissues by immunofluorescence, and the number of NETs in peripheral blood was evaluated by ELISA, which measured the quantity of cf-DNA and MPO-DNA in serum. Platelet P-selectin expression and platelet-neutrophil aggregation were measured by flow cytometry, and plasma P-selectin expression was measured by ELISA. Furthermore, the mechanism of the stimulator of interferon genes (STING) signaling pathway in ZXP's anti-sepsis thrombosis effect was investigated using the STING agonist, Western blot experiments, and immunoprecipitation experiments. RESULTS: UPLC-QTOF-MS identified 40 chemical compositions of ZXP. Administration of ZXP resulted in significant improvements in liver thrombosis, platelet counts, and levels of TXB2, TF, PAI-1, and D-Dimer in septic rats. Moreover, ZXP inhibited NETs formation in both liver tissue and peripheral blood. Additionally, ZXP decreased the levels of P-selectin in both platelets and plasma, as well as the formation of platelet-neutrophil aggregates, thereby suppressing P-selectin-mediated NETs release. Immunoprecipitation and immunofluorescence staining experiments revealed that ZXP attenuated P-selectin secretion by inhibiting STING-mediated assembly of platelet soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) complex, ultimately preventing inhibition of NETs formation. CONCLUSION: Our study showed that ZXP effectively mitigates platelet granule secretion primarily through modulation of the STING pathway, consequently impeding NET-associated thrombosis in sepsis. These findings offer valuable insights for future research on the development and application of ZXP.

2.
Chin Herb Med ; 15(4): 496-508, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38094018

RESUMO

Ischemic stroke (IS) is a severe cerebrovascular disease with a high incidence, mortality, and disability rate. The first-line treatment for IS is the use of recombinant tissue plasminogen activator (r-tPA). Regrettably, numerous patients encounter delays in treatment due to the narrow therapeutic window and the associated risk of hemorrhage. Traditional Chinese medicine (TCM) has exhibited distinct advantages in preventing and treating IS. TCM enhances cerebral microcirculation, alleviates neurological disorders, regulates energy metabolism, mitigates inflammation, reduces oxidative stress injuries, and inhibits apoptosis, thereby mitigating brain damage and preventing IS recurrence. This article summarizes the etiology, pathogenesis, therapeutic strategies, and relationship with modern biology of IS from the perspective of TCM, describes the advantages of TCM in the treatment of IS, and further reviews the pharmacodynamic characteristics and advantages of TCM in the acute and recovery phases of IS as well as in post-stroke complications. Additionally, it offers valuable insights and references for the clinical application of TCM in IS prevention and treatment, as well as for the development of novel drugs.

3.
Chin Herb Med ; 15(4): 476-484, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38094019

RESUMO

Modern medicine has made remarkable achievements in safeguarding people's life and health, however, it is increasingly found that in the face of complex diseases, selective targeting of single target is often difficult to produce a comprehensive rehabilitation effect, and is prone to induce drug resistance, toxic side effects. Traditional Chinese medicine (TCM) has a long history of clinical application, and its clinical value in the treatment of complex diseases such as cardiovascular and cerebrovascular diseases, digestive diseases, skin diseases, rheumatism and immunity diseases, and adjuvant treatment of tumors has been proven to have obvious advantages. However, its modern research is relatively lagging behind, and in the face of the aging society and the characteristics of the modern disease spectrum, the traditional knowledge-driven research paradigm seems to be stuck in a bottleneck and difficult to make greater breakthroughs. Focusing on the key issues of TCM development in the new era, the clinical value-oriented strategy becomes to be a new research paradigm of TCM inheritance and innovation development, and dominant diseases would be the focus of the TCM inheritance and innovation development, which has been highly valued in recent years by the TCM academia and the relevant national management departments. Based on the clinical value, a series of policies are formulated for the selection and evaluation of the TCM dominant diseases (TCMDD), and exploratory researches about the clinical efficacy characteristics, the modern scientific connotation interpretation were carried out. The clinical value-oriented research paradigm of TCMDD inheritance and innovation development has been initially formed, which is characterized by strong policy support as the guarantee, systematic and standardized selection and evaluation methods as the driving force, scientific and effective research on internal mechanisms as the expansion, and effective clinical guidelines and principles as the transformation, which is of great value in promoting the high-quality development of the industries and undertaking of TCM. In this paper, the main policy support, selection and evaluation methods, therapeutic effect characterization, and modern scientific connotation research strategies of TCMDD in recent years have been comprehensively sorted out, with a view to providing the healthy and benign development of the research on TCMDD.

4.
Neurochem Int ; 169: 105591, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37543309

RESUMO

Diabetic cognitive impairment (DCI) is a complex complication of diabetes in the central nervous system, and its pathological mechanism is still being explored. Astrocytes are abundant glial cells in central nervous system that perform diverse functions in health and disease. Accumulating excellent research has identified astrocyte dysfunction in many neurodegenerative diseases (such as Alzheimer's disease, aging and Parkinson's disease), and summarized and discussed its pathological mechanisms and potential therapeutic value. However, the contribution of astrocytes to DCI has been largely overlooked. In this review, we first systematically summarized the effects and mechanisms of diabetes on brain astrocytes, and found that the diabetic environment (such as hyperglycemia, advanced glycation end products and cerebral insulin resistance) mediated brain reactive astrogliosis, which was specifically reflected in the changes of cell morphology and the remodeling of signature molecules. Secondly, we emphasized the contribution and potential targets of reactive astrogliosis to DCI, and found that reactive astrogliosis-induced increased blood-brain barrier permeability, glymphatic system dysfunction, neuroinflammation, abnormal cell communication and cholesterol metabolism dysregulation worsened cognitive function. In addition, we summarized effective strategies for treating DCI by targeting astrocytes. Finally, we discuss the application of new techniques in astrocytes, including single-cell transcriptome, in situ sequencing, and prospected new functions, new subsets and new targets of astrocytes in DCI.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus , Humanos , Astrócitos/metabolismo , Gliose/metabolismo , Encéfalo/patologia , Diabetes Mellitus/metabolismo , Inflamação/metabolismo , Disfunção Cognitiva/metabolismo
5.
Acta Pharm Sin B ; 13(7): 2817-2825, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37521866

RESUMO

Cognitive dysfunction is one of the common central nervous systems (CNS) complications of diabetes mellitus, which seriously affects the quality of life of patients and results in a huge economic burden. The glymphatic system dysfunction mediated by aquaporin-4 (AQP4) loss or redistribution in perivascular astrocyte endfeet plays a crucial role in diabetes-induced cognitive impairment (DCI). However, the mechanism of AQP4 loss or redistribution in the diabetic states remains unclear. Accumulating evidence suggests that peripheral insulin resistance target tissues and CNS communication affect brain homeostasis and that exosomal miRNAs are key mediators. Glucose and lipid metabolism disorder is an important pathological feature of diabetes mellitus, and skeletal muscle, liver and adipose tissue are the key target insulin resistance organs. In this review, the changes in exosomal miRNAs induced by peripheral metabolism disorders in diabetes mellitus were systematically reviewed. We focused on exosomal miRNAs that could induce low AQP4 expression and redistribution in perivascular astrocyte endfeet, which could provide an interorgan communication pathway to illustrate the pathogenesis of DCI. Furthermore, the mechanisms of exosome secretion from peripheral insulin resistance target tissue and absorption to the CNS were summarized, which will be beneficial for proposing novel and feasible strategies to optimize DCI prevention and/or treatment in diabetic patients.

6.
Eur J Pharmacol ; 933: 175260, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36116517

RESUMO

It has been increasingly accepted that Multi-Ingredient-Based interventions provide advantages over single-target therapy for complex diseases. With the growing development of Traditional Chinese Medicine (TCM) and continually being refined of a holistic view, "multi-target" and "multi-pathway" integration characteristics of which are being accepted. However, its effector substances, efficacy targets, especially the combination rules and mechanisms remain unclear, and more powerful strategies to interpret the synergy are urgently needed. Artificial intelligence (AI) and computer vision lead to a rapidly expanding in many fields, including diagnosis and treatment of TCM. AI technology significantly improves the reliability and accuracy of diagnostics, target screening, and new drug research. While all AI techniques are capable of matching models to biological big data, the specific methods are complex and varied. Retrieves literature by the keywords such as "artificial intelligence", "machine learning", "deep learning", "traditional Chinese medicine" and "Chinese medicine". Search the application of computer algorithms of TCM between 2000 and 2021 in PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), Elsevier and Springer. This review concentrates on the application of computational in herb quality evaluation, drug target discovery, optimized compatibility and medical diagnoses of TCM. We describe the characteristics of biological data for which different AI techniques are applicable, and discuss some of the best data mining methods and the problems faced by deep learning and machine learning methods applied to Chinese medicine.


Assuntos
Medicamentos de Ervas Chinesas , Inteligência Artificial , Simulação por Computador , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa , Reprodutibilidade dos Testes
7.
Front Pharmacol ; 13: 898360, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910371

RESUMO

Background : Cognitive dysfunction is a critical complication of diabetes mellitus, and there are still no clinically approved drugs. Zi Shen Wan Fang (ZSWF) is an optimized prescription composed of Anemarrhenae Rhizoma, Phellodendri Chinensis Cortex, and Cistanches Herba. The purpose of this study is to investigate the effect of ZSWF on DCI and explore its mechanism from the perspective of maintaining intestinal microbial homeostasis in order to find an effective prescription for treating DCI. Methods: The diabetes model was established by a high-fat diet combined with intraperitoneal injections of streptozotocin (STZ, 120 mg/kg) and the DCI model was screened by Morris water maze (MWM) after 8 weeks of continuous hyperglycemic stimulation. The DCI mice were randomly divided into the model group (DCI), the low- and high-ZSWF-dose groups (9.63 g/kg, 18.72 g/kg), the mixed antibiotic group (ABs), and the ZSWF combined with mixed antibiotic group (ZSWF + ABs). ZSWF was administered orally once a day for 8 weeks. Then, cognitive function was assessed using MWM, neuroinflammation and systemic inflammation were analyzed by enzyme-linked immunosorbent assay kits, intestinal barrier integrity was assessed by hematoxylin-eosin (HE) staining and Western blot and high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Furthermore, the alteration to intestinal flora was monitored by 16S rDNA sequencing. Results: ZSWF restored cognitive function in DCI mice and reduced levels of proinflammatory cytokines such as IL-1ß, IL-6, and TNF-α. Moreover, ZSWF protected the integrity of the intestinal barrier by increasing intestinal ZO-1 and occludin protein expression and decreasing urinary lactulose to mannitol ratio. In addition, ZSWF reshaped the imbalanced gut microbiota in DCI mice by reversing the abundance changes of a wide range of intestinal bacteria at the phyla and genus levels. In contrast, removing gut microbiota with antibiotics partially eliminated the effects of ZSWF on improving cognitive function and reducing inflammation, confirming the essential role of gut microbiota in the improvement of DCI by ZSWF. Conclusion: ZSWF can reverse cognitive impairment in DCI mice by remolding the structure of destructed gut microbiota community, which is a potential Chinese medicine prescription for DCI treatment.

8.
Phytomedicine ; 99: 154000, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35235888

RESUMO

BACKGROUND: Cognitive dysfunction is commonly observed in diabetic patients, yet, the underlying mechanisms are obscure and there are no approved drugs. Skeletal muscle is a key pathological organ in diabetes. Evidence is accumulating that skeletal muscle and brain communication are important for cognitive, and kynurenine (KYN) metabolism is one of the mediators. PURPOSE: This study aims to elucidate the mechanism of diabetes-induced cognitive impairment (DCI) from the perspective of skeletal muscle and brain communication, and to explore the therapeutic effect of Zi Shen Wan Fang (ZSWF, a optimized prescription consists of Anemarrhenae Rhizoma (Anemarrhena asphodeloides Bge.), Phellodendri Chinensis Cortex (Phellodendron chinense Schneid.) and Cistanches Herba (Cistanche deserticola Y.C.Ma)), in order to provide new strategies for the prevention and treatment of DCI and preliminarily explore valuable drugs. METHODS: DCI was induced by intraperitoneal injection of streptozotocin (STZ) combined with a high-fat diet and treated with different dosage ZSWF extract by oral gavage for 8 weeks, once a day. Cognitive and skeletal muscle function was assessed, synaptic plasticity and L-type amino acid transporter (LAT1) was measured. KYN and its metabolites as well as metabolic enzymes in the hippocampus, peripheral blood and skeletal muscle were measured. Peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α) and peroxisome proliferator-activated receptor α (PPARα) were measured in skeletal muscle. RESULTS: Compared with healthy mice, DCI mice not only showed decreased cognitive function and abnormal skeletal muscle function, but also showed imbalance of KYN metabolism in brain, circulating blood and skeletal muscle. Fortunately, ZSWF administration for 8 weeks notably attenuated the cognitive function, synaptic plasticity and skeletal muscle function in DCI mice. Besides, ZSWF significantly attenuated KYN metabolism in brain, circulation and skeletal muscle of DCI mice. Furthermore, ZSWF activated PGC1α-PPARα in skeletal muscle of DCI mice. CONCLUSIONS: These results indicate that abnormal PGC1α-PPARα signaling in skeletal muscle mediating KYN metabolism disorder is one of the pathological mechanisms of DCI, and ZSWF can reverse diabetes-induced cognitive impairment via activating skeletal muscle PGC1α-PPARα signaling to maintain KYN metabolism homeostasis.

9.
Brain Res Bull ; 175: 99-106, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34303767

RESUMO

BACKGROUND: Cognitive dysfunction is increasingly recognized as an important complication of diabetes mellitus (DM). Accumulating evidence indicates that the abnormality of cerebrovascular structure and function plays an essential role in diabetic cognitive impairment (DCI), however, changes in cerebrovascular factors have been blurred during the development of diabetes. OBJECTIVE: To evaluate the changes in the structure and function of cerebrovascular in DCI mice and to investigate the changes of cerebral angiogenesis and stability factors during the development of DM. METHODS: Diabetes was induced by feeding with high-fat diet combined with intraperitoneal injection of streptozotocin (STZ,120 mg/kg). Cognitive function was evaluated at different stages of DM, cerebral neovascularization, blood-brain barrier (BBB) permeability and hippocampal neurons were measured of DCI mice, and the expression of vascular endothelial growth factor (VEGF) and platelet-derived growth factor receptor ß (PDGFRß) in hippocampus was detected during the development of DM. RESULTS: With the progress of diabetes, the learning and memory ability of mice gradually decreased, and DCI mice showed neuronal degeneration, increased BBB permeability and pathological cerebral neovascularization. Moreover, the expression of VEGF in the hippocampus increased first and then decreased at DM+8week, PDGFRß decreased continuously with the development of diabetes. CONCLUSIONS: Our results demonstrate that DCI may be attributed to the dynamic expression of VEGF/PDGFRß in diabetic hippocampus, and pathological cerebral neovascularization, increased BBB permeability and neuronal degeneration are the key links.


Assuntos
Química Encefálica/genética , Transtornos Cognitivos/genética , Transtornos Cognitivos/psicologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/psicologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/biossíntese , Fator A de Crescimento do Endotélio Vascular/biossíntese , Animais , Barreira Hematoencefálica , Dieta Hiperlipídica , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/efeitos dos fármacos , Desempenho Psicomotor
10.
Pharmacol Res ; 163: 105234, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33053446

RESUMO

Although it is feared that diabetes-induced cognitive impairment (DCI) will become a major clinical problem worldwide in the future, its detailed pathological mechanism is not well known. Because patients with diabetes have various complications of vascular disease, vascular disorders in the brain are considered to be one of the main mechanisms of DCI. Mounting evidence suggests that the vascular endothelial growth factor (VEGF) family plays a crucial role in the development of DCI. In this review, we summarized the changes and functions of VEGF during the development of DCI, and speculated that it was characterized by spatiotemporal variations in DCI progression. Considering the complexity of DCI pathogenesis and the diversity of VEGF function, we focused on the interrelationship of DCI and VEGF spatiotemporal variations during DCI development. During the progression of DCI, hyperglycemia, abnormal brain insulin signals, advanced glycation end products (AGEs) and consequently hypoxia, oxidative stress, and inflammation are the main pathophysiological changes; hypoxia-inducible factor (HIF), reactive oxygen species (ROS), and nuclear factor kappa beta (NF-κB) play major roles in DCI-related VEGF spatiotemporal regulation. Furthermore, spatiotemporal variations in VEGF-mediated pathological cerebral neovascularization, repair and regeneration of dural lymphatic vessels, increased blood-brain barrier (BBB) permeability and slight neuroprotection are increasing emphasized as potential targets in the treatment of DCI.


Assuntos
Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Complicações do Diabetes/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Disfunção Cognitiva/tratamento farmacológico , Complicações do Diabetes/tratamento farmacológico , Progressão da Doença , Humanos
11.
Inflammation ; 43(6): 2087-2097, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32914364

RESUMO

Lycopodii herba (SJC), a traditional Chinese medicine, has the effect of dispelling wind and eliminating dampness (a therapeutic principle and method of traditional Chinese medicine for rheumatoid arthritis), relaxing tendon and activating collaterals. However, the major effective components and its therapeutic mechanism were unclear. In this study, different SJC samples with slightly different compositions were prepared by extracting with different concentrations of ethanol. Then, the therapeutic effects on rheumatoid arthritis (RA) of different SJC samples were evaluated. Finally, the spectrum-effect relationship between UPLC-Q-TOF/MS fingerprints and the effect of RA was explored to screen the effective components. Western blotting was used to study the potential mechanism. The volume of hind paw and the level of RF, TNF-α, and IL-1ß were lower after administrating with different SJC samples, compared with the model group. Histopathological findings also confirmed that SJC could relieve the symptoms of RA. Combined with identification of the components in plasm from SJC, lycojaponicumin C, des-N-methyl-α-obscurine, 8ß-acetoxy-12ß-hydroxy-lycopodine or 8ß-acetoxy-11α-hydroxy-lycopodine or 8ß-hydroxy-11α-acetoxylycopodine were considered to be the major effective components. The mechanism may be related to AChE/NF-κB signaling pathway. This work provides a general method to screen the potential effective components of herb medicines and would be benefit to understand the mechanism of SJC for the treatment of RA.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Extratos Vegetais/farmacologia , Alcaloides/análise , Animais , Compostos Azabicíclicos/análise , Medicamentos de Ervas Chinesas/uso terapêutico , Etanol , Interleucina-1beta/biossíntese , Masculino , Medicina Tradicional Chinesa , Extratos Vegetais/uso terapêutico , Quinolizinas , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Fator Reumatoide/metabolismo , Transdução de Sinais , Tendões/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
12.
J Ethnopharmacol ; 260: 113016, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32464317

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Eucommia ulmoides Oliv., a Chinese medicinal herb called "Duzhong" from the bark of Eucommia ulmoides Oliv., has been shown to possess significant protective effects in Parkinson's disease (PD). However, the molecular mechanism remains unclear. AIM OF THE STUDY: In this study, we explored the anti-neuroinflammatory mechanisms of Duzhong on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model to elucidate the traditional medical theories with modern pharmacological methods and to provide a reference for further clarifying its mechanisms of action. MATERIALS AND METHODS: The representative components in Duzhong extract were identified by UPLC-Q-TOF/MS. Male C57BL/6J mice were intraperitoneally injected with MPTP to establish an in vivo PD model. The pole, rotarod, and grip strength tests were performed to evaluate the motor coordination ability of the PD mice. HPLC-ECD was used to detect the striatal levels of dopamine (DA), 3,4- dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA). The expression of tyrosine hydroxylase (TH) was studied by immunohistochemistry (IHC) and Western blot assays. ELISA and Q-PCR were used examined the levels of proinflammatory cytokines in the serum and midbrain, respectively. Whole-transcriptome analysis of the midbrain was performed to explore the therapeutic effect of Duzhong on PD mice, and Q-PCR was then used to validate the differential gene expression changes in the PD mice treated with Duzhong. RESULTS: Ten compounds were identified from Duzhong extract. Duzhong significantly alleviated the behavioral impairments and dopaminergic neuron degeneration of PD mice, and inhibited the expression of proinflammatory cytokines. Whole-transcriptome analysis revealed nine oppositely regulated genes, and the Fosl2 gene was consistent with the trend of observed by RNA-seq. Furthermore, Duzhong downregulated mRNA expression of p38 and JNK, which are key upstream genes of Fosl2. CONCLUSIONS: Duzhong has promising therapeutic potential in PD mice, and its molecular mechanism is mediated by downregulating p38/JNK-Fosl2 gene expression to alleviate neuroinflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Eucommiaceae/química , Inflamação/tratamento farmacológico , Transtornos Parkinsonianos/tratamento farmacológico , Animais , Anti-Inflamatórios/isolamento & purificação , Citocinas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Antígeno 2 Relacionado a Fos/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos Parkinsonianos/fisiopatologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética
13.
J Pharm Biomed Anal ; 180: 113068, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31884392

RESUMO

Rheumatoid arthritis (RA) is a chronic progressive disease, it often involves kidney, lung, heart, and other systems.Renal damage is quite common in RA. Exploring of biomarkers of renal damage in the course of RA progression is of significant importance for disease diagnosis and treatment. We use type II Collagen-Induced Arthritis(CIA) Model. Serums were collected at the 4th, 6th, 8th, and 10th week after the first immunization. An untargeted metabonomic strategy based on UPLC-Q/TOF/MS with support vector machine(SVM) was developed to discover the biomarkers in the rats' serum samples between the RA stage(4-6 weeks in RA model, at which time the kidneys are not affected) and renal damage in RA stage(8-10 weeks in RA model, and the kidneys are affected). Principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were used to analyze the metabolic profiles of rat serum. The support vector machine (SVM) method was used to screen the specific markers of renal damage in RA. Following multivariate statistical and integration analysis, 5 specific markers of renal damage in RA were screened and found. After the analysis of these metabolites, pentose and glucuronate interconversions are closely related to the pathogenesis of RA renal damage. The present study first use untargeted dmetabonomics combined with the pathological features in the different phases of CIA model rats. This will provide a basis for the choice of treatment drugs for patients with RA who may be complicated by renal damage.


Assuntos
Artrite Experimental/sangue , Artrite Reumatoide/sangue , Rim , Metaboloma , Insuficiência Renal/sangue , Animais , Artrite Experimental/complicações , Artrite Experimental/patologia , Artrite Reumatoide/complicações , Artrite Reumatoide/patologia , Biomarcadores/sangue , Cromatografia Líquida de Alta Pressão , Feminino , Rim/metabolismo , Rim/patologia , Espectrometria de Massas , Metabolômica , Ratos Sprague-Dawley , Insuficiência Renal/etiologia , Insuficiência Renal/patologia
14.
J Alzheimers Dis ; 65(1): 15-28, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30040723

RESUMO

Diabetes mellitus is a metabolic disease often accompanied by a series of complications, such as diabetic nephropathy, retinopathy, and diabetic foot. The survival time of diabetics has been significantly prolonged due to advancements in medicine. However, the prolonged survival time for diabetics can increase the prevalence of diabetic central nervous system disease. Diabetic encephalopathy (DE) has become one of the main complications of the disease, and the main clinical manifestation of DE is cognitive dysfunction. However, the typical morphological and pathological characteristics of the brain in DE are rarely systematically reported. Thus, this phenomenon severely restricts the diagnosis and treatment of DE. This article presents a description of the pathology characteristics of DE, including atrophy of the brain (gray matter, white matter, and hippocampus), changes in cerebrovascular morphology and function, impairment of synaptic plasticity, and dysfunction of neuroglia. In addition, abnormalities in the glymphatic clearance system of the brain are closely related to the progression of DE. A review of typical brain morphological and pathological characteristics would aid in the diagnosis and treatment of DE.


Assuntos
Encefalopatias/etiologia , Encefalopatias/patologia , Encéfalo/patologia , Complicações do Diabetes/fisiopatologia , Atrofia/etiologia , Transtornos Cerebrovasculares/etiologia , Humanos
15.
Toxicol Lett ; 268: 17-25, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28099878

RESUMO

Cardiotoxicity is one of the most serious side effects of new drugs. Early detection of the drug induced cardiotoxicity based on the biomarkers provides an important preventative strategy for detecting potential cardiotoxicity of candidate drugs. In this study, we aim to identify the predictive genomics biomarkers for drug-induced cardiac toxicity based on the RTCA coupled with PCR Array technology in primary cells. Three prototypical cardiotoxic compounds (doxorubicin, isoproterenol, ouabain) with different mechanisms were firstly real-time monitored to diagnose the cytotoxicity by using the RTCA, while the functional alterations of cardiomyocytes were also monitored by analyzing the beating frequency of cardiomyocytes. Then cardiac specific toxicity gene expression changes were studied by using the technology of PCR Array, which can detect the changes of 84 cardiac functions related genes. Rps6kb1 was identified to be the common cardiac biomarkers by using multivariate statistical and integration analyses. The biomarker was further verified by selecting other drugs with or without cardiotoxicity, and the results showed that the gene exhibited specific changes in cardiac toxicity. Moreover, IPA was applied to combine relevant pathways of Rps6kb1, and identify the main types of cardiac toxicity. These results would further enrich the evaluating strategy of drug-induced cardiotoxicity in vitro, and Rps6kb1 could be used as the specific biomarker of cardiotoxcity during safety assessment of the novel drug candidates.


Assuntos
Doxorrubicina/toxicidade , Perfilação da Expressão Gênica/métodos , Cardiopatias/induzido quimicamente , Cardiopatias/genética , Isoproterenol/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Ouabaína/toxicidade , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Testes de Toxicidade , Animais , Animais Recém-Nascidos , Cardiotoxicidade , Células Cultivadas , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Marcadores Genéticos , Cardiopatias/metabolismo , Cardiopatias/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo
16.
Se Pu ; 22(3): 255-7, 2004 May.
Artigo em Chinês | MEDLINE | ID: mdl-15712911

RESUMO

A method for determination of verapamil (VRPM) concentrations in dog serum and tissues was established. The study was carried out on a high performance liquid chromatograph with a reversed-phase C18 column, a mobile phase of acetate-methanol-triethylamine (40:60:1, v/v) at 1.0 mL/min, and UV detection at 228 nm. Diazepam was used as the internal standard. The detection limits of VRPM concentrations in serum and tissues were determined to be 50 microg/L and 50 ng/g, respectively. Good linearities were observed for VRPM in serum and in liver tissue (r > 0.999). The precision of the method was good and the recoveries of VRPM were higher than 90.80%. This method is rapid, accurate and convenient for determination of VRPM concentrations in serum and tissues.


Assuntos
Bloqueadores dos Canais de Cálcio/análise , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Fígado/metabolismo , Verapamil/análise , Animais , Bloqueadores dos Canais de Cálcio/sangue , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Cães , Indicadores e Reagentes , Fígado/efeitos dos fármacos , Verapamil/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...